Streamlining machine learning in mobile devices for remote sensing

Andrei D. Coronel, Ma Regina E. Estuar, Kyle Kristopher P. Garcia, Bon Lemuel T. Dela Cruz, Jose Emmanuel Torrijos, Hadrian Paulo M. Lim, Patricia Angela R. Abu, John Noel C. Victorino

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Original languageEnglish
Title of host publicationFifth International Conference on Remote Sensing and Geoinformation of the Environment, RSCy 2017
EditorsVincent Ambrosia, Kyriacos Themistocleous, Silas Michaelides, Giorgos Papadavid, Gunter Schreier, Diofantos G. Hadjimitsis
PublisherSPIE
ISBN (Electronic)9781510613522
DOIs
StatePublished - 2017
Event5th International Conference on Remote Sensing and Geoinformation of the Environment, RSCy 2017 - Paphos, Cyprus
Duration: Mar 20 2017Mar 23 2017

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10444
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference5th International Conference on Remote Sensing and Geoinformation of the Environment, RSCy 2017
Country/TerritoryCyprus
CityPaphos
Period3/20/173/23/17

ASJC Scopus Subject Areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Keywords

  • Machine learning
  • Mobile devices
  • Remote sensing
  • Smart farming

Fingerprint

Dive into the research topics of 'Streamlining machine learning in mobile devices for remote sensing'. Together they form a unique fingerprint.

Cite this